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We discuss the novel electronic properties of graphene under an external periodic scalar or vector

potential, and the analytical and numerical methods used to investigate them. When graphene is

subjected to a one-dimensional periodic scalar potential, owing to the linear dispersion and the chiral

(pseudospin) nature of the electronic states, the group velocity of its carriers is renormalized highly

anisotropically in such a manner that the velocity is invariant along the periodic direction but is

reduced the most along the perpendicular direction. Under a periodic scalar potential, new massless

Dirac fermions are generated at the supercell Brillouin zone boundaries. Also, we show that if the

strength of the applied scalar potential is sufficiently strong, new zero-energy modes may be generated.

With the periodic scalar potential satisfying some special conditions, the energy dispersion near the

Dirac point becomes quasi one-dimensional. On the other hand, for graphene under a one-dimensional

periodic vector potential (resulting in a periodic magnetic field perpendicular to the graphene plane),

the group velocity is reduced isotropically and monotonically with the strength of the potential.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Graphene is a single atomic layer of carbon atoms arranged in
a honeycomb structure. The electronic states in graphene obey a
unique linear energy dispersion relation near the Fermi energy
(Fig. 1(a)), and they possess an additional quantum number called
pseudospin which describes the electron’s probability amplitudes
at the two different sublattices of carbon atoms forming graphene
[1]. These behaviors are similar to those of massless neutrinos in
relativistic quantum physics except that the role played by the
actual spin of the neutrinos is now replaced by the pseudospin in
graphene.

When graphene is subjected to a slowly varying nanoscale
external periodic scalar or vector potential, the quasiparticles in
graphene show even more interesting physics. Recently, there
have been several studies on the electronic properties of graphene
under either a periodic scalar potential [2–11], under a periodic
vector potential [12–18], or under a periodic corrugation [19–21].

Graphene superlattices are not just theorists’ dream but have
been experimentally realized. Superlattice patterns with periodi-
city as small as 5 nm have been imprinted on graphene through
electron-beam induced deposition of adsorbates [22], triangular
patterns with � 10 nm lattice period have been observed for
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graphene on metal surfaces [23–29], and periodically corrugated
graphene sheet has also been reported [30]. Periodically patterned
gates can provide another route for making graphene super-
lattices.

In this paper, we review the electronic properties of charge
carriers in graphene under an external periodic scalar or vector
potential. Especially, we focus on one-dimensional (1D) periodic
potentials (e.g., Fig. 1(b) or (c)) for simplicity. However, many of
the essential findings discussed here are applicable to two-
dimensional (2D) periodic potentials. We also discuss the
methodologies used in the analytical and numerical calculations.

The rest of the paper is organized as follows. In Sections 2
and 3, we present the analytical derivation of the energy–
momentum dispersion relation near the Dirac points (original or
newly generated) in graphene under an external periodic scalar
potential and vector potential, respectively. In Section 4, we
present the details of our numerical calculations used in studying
the effects of stronger perturbing potentials. In Section 5, we
discuss the emerging massless Dirac fermions and quasi-1D
modes under a strong external periodic scalar potential. Finally, in
Section 6, we summarize our findings.
2. Graphene under an external periodic scalar potential

In this section, through analytical calculations, we show that
when a 1D periodic scalar potential is applied to graphene: (i) the
group velocity of the massless Dirac fermions is anisotropically

www.elsevier.com/locate/physe
dx.doi.org/10.1016/j.physe.2010.07.022
mailto:sglouie@berkeley.edu
dx.doi.org/10.1016/j.physe.2010.07.022


Fig. 1. (a) Schematic diagram of graphene. Inset: the linear and isotropic energy

dispersion near one of the Dirac points in graphene. (b) A 1D graphene superlattice

formed by Kronig–Penney type of scalar potential V(x,y)¼V(x) periodic along the x

direction with spatial period L. The potential is U0/2 in the grey regions and �U0/2

outside. Inset: energy dispersion of charge carriers in this graphene superlattice.

The energy dispersion along any line in 2D wavevector space going through the

Dirac point is linear but with different group velocity. For a particle moving

parallel to the periodic direction, the group velocity is not renormalized at all

whereas that for a particle moving perpendicular to the direction of periodicity is

reduced the most. (c) A 1D graphene superlattice formed by Kronig–Penney type

of vector potential Aðx,yÞ ¼ AyðxÞŷ periodic along the x direction with spatial period

L. The vector potential Ay(x) is A0/2 in the grey regions and �A0/2 outside. Inset:

energy dispersion of charge carriers in this graphene superlattice. The group

velocity around the Dirac point is reduced isotropically.
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renormalized in momentum space in an unexpected fashion, and
(ii) new massless Dirac fermions are generated at the supercell
Brillouin zone boundaries [6].

We consider a situation where the spatial variation of the
external periodic potential is much slower than the inter-carbon
distance so that inter-valley scattering between the K and Ku points
in the Brillouin zone may be neglected [31,32]. We shall further
limit our discussion to the low-energy electronic states of graphene
which have wavevector k+K close to the K point, i.e. with jkj5 jKj.

There are two carbon atoms per unit cell in graphene, forming
two different sublattices. Hence the eigenstate of charge carriers
in graphene can be represented by a two component basis vector.
The Hamiltonian of the low-energy quasiparticles in pristine

graphene in a pseudospin basis,
1

0

� �
eik�r and

0

1

� �
eik�r, where

1

0

� �

and
0

1

� �
symbolically represent Bloch sums of p�orbitals with

wavevector K on the sublattices A and B, respectively, is given by
[33]

H0 ¼ ‘v0ð�isx@x�isy@yÞ, ð1Þ

where v0 is the band velocity and the s’s are the Pauli matrices.
The eigenstates and the energy eigenvalues are given by

c0
s,kðrÞ ¼

1ffiffiffi
2
p

1

seiyk

� �
eik�r ð2Þ
and

E0
s ðkÞ ¼ s‘v0k, ð3Þ

respectively, where s¼ 71 is the band index and yk is the angle
between k and the +kx direction.

We now assume that a 1D scalar potential V(x), periodic along
the x direction with periodicity L, is applied to graphene
(Fig. 1(b)). The Hamiltonian H then reads

H¼ ‘v0ð�isx@x�isy@yþ IVðxÞ=‘v0Þ, ð4Þ

where I is the 2�2 identity matrix. Next we perform a similarity
transform, Hu¼Uy1HU1, using the unitary matrix

U1 ¼
1ffiffiffi
2
p

e�iaðxÞ=2 �eiaðxÞ=2

e�iaðxÞ=2 eiaðxÞ=2

 !
, ð5Þ

where aðxÞ is given by

aðxÞ ¼ 2

Z x

0
VðxuÞdxu=‘v0: ð6Þ

Here, without losing generality, we shall assume that an
appropriate constant has been subtracted from V(x) and that
V(x) has been shifted along the x direction so that the averages of
both V(x) and aðxÞ are zero. The transformed Hamiltonian Hu takes
the form

Hu¼ ‘v0

�i@x �eiaðxÞ@y

e�iaðxÞ@y i@x

 !
: ð7Þ

A similar transform has been used to study nanotubes under a
sinusoidal potential [34,35].

We are interested in the low-energy quasiparticle states whose
wavevector k� pþGm=2 (where Gm ¼mð2p=LÞx̂ �mGx̂ is a
reciprocal vector) is such that jpj5G. In this case, we could treat
the terms containing @y in Eq. (7) as a perturbation. Also, to a good
approximation, Hu may be reduced to a 2�2 matrix using the
following two states as basis functions

1

0

� �
u

eiðpþGm=2Þ�r and
0

1

� �
u

eiðp�Gm=2Þ�r: ð8Þ

Here, we should note that the spinors
1

0

� �
u

and
0

1

� �
u

now have a

different meaning from
1

0

� �
and

0

1

� �
.

In order to calculate these matrix elements, we perform a
Fourier transform of eiaðxÞ

eiaðxÞ ¼
X1

l ¼ �1

fl½V �e
ilGx, ð9Þ

where the Fourier components fl[V]’s are determined by the
periodic potential V(x). We should note that in general

jfljo1, ð10Þ

which can directly be deduced from Eq. (9). The physics simplifies
when the external potential V(x) is an even function and hence
aðxÞ in Eq. (6) is an odd function. If we take the complex conjugate
of Eq. (9) and change x to �x, it is evident that fl[V]’s are real.
General cases other than even potentials are discussed in Ref. [6].
For states with wavevector k very close to Gm/2, the 2�2 matrix
M whose elements are calculated from the Hamiltonian Hu with
the basis given by Eq. (8) can be written as

M¼ ‘v0ðpxszþ fmpysyÞþ‘v0mG=2I: ð11Þ

After performing yet another similarity transform Mu¼Uy2MU2

with

U2 ¼
1ffiffiffi
2
p

1 1

�1 1

� �
, ð12Þ
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we obtain the final result:

Mu¼ ‘v0ðpxsxþ fmpysyÞþ‘v0mG=2I: ð13Þ

The energy eigenvalue of the matrix Mu is given by

EsðpÞ ¼ s‘v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

xþjfmj
2p2

y

q
þ‘v0mG=2: ð14Þ

Eq. (14) holds in general and not only for cases where the
potential V(x) is even [6]. The only difference of the energy
spectrum in Eq. (3) from that in Eq. (14), other than a constant
energy term, is that the group velocity of quasiparticles moving
along the y direction has been changed from v0 to jfmjv0. Thus, the
electronic states near k¼Gm/2 are also those of massless Dirac
fermions but having a group velocity varying anisotropically

depending on the propagation direction. The group velocity along
the x direction is unchanged independent of the potential.
Moreover, the group velocity along the y direction is always lower

than v0 (Eq. (10)) regardless of the form or magnitude of the
periodic potential V(x) as schematically depicted in Fig. 1(b).

We have thus shown that other than the original Dirac points,
new massless Dirac fermions are generated around the supercell
Brillouin zone boundaries, i.e., the case with non-zero m values in
Eq. (14). It has also been shown that these newly generated
massless Dirac points are the only available states in a certain
energy window if graphene is subjected to a 2D repulsive periodic
scalar potential having triangular symmetry [6].

One more thing to note is that in graphene under an external
periodic scalar potential, a generalized pseudospin vector can
be defined and used to describe the scattering properties
between eigenstates; and especially, back-scattering processes
by a slowly varying impurity potential are suppressed as in
pristine graphene [6].
3. Graphene under a 1D external periodic vector potential

Now we move on to the case where a 1D vector potential
Aðx,yÞ ¼ AyðxÞŷ is applied to graphene (Fig. 1(c)). We show through
a novel transformation relation between scalar and vector
potentials [18] that, unlike the electrostatic case, the group
velocity of charge carriers in graphene under a 1D periodic vector
potential is renormalized isotropically.

The superlattice Hamiltonian, following the Peierls substitu-
tion, is given by

H¼ ‘v0ð�isx@x�isy@y�syeAyðxÞ=‘cÞ, ð15Þ

where e is the charge of an electron (eo0) and c is the speed of
light. The time-dependent Dirac equation then reads

i‘
dc
dt
¼ ‘v0ð�isx@x�isy@y�syeAyðxÞ=‘cÞc: ð16Þ

Writing the wavefunction as cðx,y; tÞ ¼ e�iEt=‘eikyyjðxÞ, the Dirac
equation becomes

EjðxÞ ¼ ‘v0ð�isx@xþsyky�syeAyðxÞ=‘cÞjðxÞ: ð17Þ

Now, if we multiply Eq. (17) by sy on both sides, define
juðxÞ ¼U3jðxÞ with

U3 ¼
1ffiffiffi
2
p

1 1

1 �1

� �
, ð18Þ

and use the relations U3 ¼Uy3 ¼U�1
3 , U3syU3 ¼�sy, and

U3sxU3 ¼ sz, Eq. (17) becomes

EujuðxÞ ¼ ‘v0ð�isx@xþsykuyþ IV uðxÞ=‘v0ÞjuðxÞ: ð19Þ

Here, we have defined

Eu¼�i‘v0ky, ð20Þ
kyu¼ iE=‘v0, ð21Þ

and

V uðxÞ ¼�ieðv0=cÞAyðxÞ: ð22Þ

Eq. (19) is thus equivalent to the Dirac equation with a periodic
scalar potential in Eq. (4) except that now the variables are
imaginary numbers. Using analytic continuation [18], we obtain
the energy–momentum dispersion relation in magnetic graphene
superlattices from that in electrostatic graphene superlattices. For
the states near the original Dirac point, as shown in the previous
section, the energy dispersion in graphene under a periodic scalar
potential is given (from Eq. (14)) by

EsðkÞ ¼ s‘v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xþjf0j
2k2

y

q
, ð23Þ

where according to Eq. (9)

f0 ¼
1

L

Z L

0
exp i

Z x

0

2

‘v0
VðxuÞdxu

� �
dx: ð24Þ

Plugging Eqs. (20)–(22) into Eq. (23), we obtain

EsðkÞ ¼ s
1

jf u0j
‘v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xþk2
y

q
, ð25Þ

where

f u0 ¼
1

L

Z L

0
exp

Z x

0

2e

‘c
AyðxuÞdxu

� �
dx: ð26Þ

Therefore, from Eq. (25), we find that the group velocity in
graphene under an external periodic vector potential (corre-
sponding to a perpendicular magnetic field) is renormalized
isotropically in the kx–ky space [17,18] even though the external
vector potential profile is highly anisotropic in the x–y plane
(Fig. 1(c)). Note from Eq. (26) that

jf u0j41 ð27Þ

regardless of the form of the vector potential Ay(x), i.e., the group
velocity in graphene under an external periodic vector potential is
always reduced. This result can in fact be used as a special case to
understand the predictions of velocity reduction in metallic
carbon nanotubes and gap reduction in semiconducting carbon
nanotubes under a magnetic field [36,37].
4. Numerical calculation

If one wants to find the energy eigenvalues and eigenfunctions
of graphene under an external periodic potential with wavevector
k not very close to the supercell Brillouin zone boundary centers
(Gm/2), one has to resort to numerical calculations. Such
numerical calculations have led us to the discovery of solutions
corresponding to new branches of massless Dirac fermions [8]
that are not found in the analytical calculations discussed in the
previous sections.

The scattering amplitudes arising from the periodic scalar
and vector potentials between eigenstates of pristine graphene
(Eq. (2)), using the Hamiltonians in Eq. (4) and in Eq. (15), are
given by

/c0
s,kjIVðrÞjc

0
su,kuS¼

X
G

1

2
ð1þssueiðyku�ykÞÞVðGÞdku,k�G ð28Þ

and

/c0
s,kj�ev0=csyAyðrÞjc

0
su,kuS¼ ev0=c

X
G

i

2
ðsueiyku�se�iyk ÞAyðGÞdku,k�G,

ð29Þ
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respectively. Here, G is a superlattice reciprocal lattice vector and
V(G) and Ay(G) are the corresponding Fourier components of the
external periodic scalar and vector potentials, respectively.
Therefore, the energy dispersion and eigenstates of the quasipar-
ticles in a graphene superlattice are obtained non-perturbatively
within the single-particle picture by solving the following set of
linear equations

ðE�E0
s,kÞcðs,kÞ ¼

X
su,G

1

2
ð1þssueiðyku�ykÞÞVðGÞcðsu,k�GÞ ð30Þ

for graphene under an external periodic scalar potential, and by
solving the following set of linear equations

ðE�E0
s,kÞcðs,kÞ ¼

X
su,G

1

2
ðsueiyku�se�iyk ÞAyðGÞcðsu,k�GÞ, ð31Þ

for graphene under an external periodic vector potential, where E

is the superlattice energy eigenvalue and we have used Eqs. (3),
(28), and (29). The amplitudes c(s,k) and cðsu,k�GÞ indicate the
mixing among different unperturbed quasiparticle states of
pristine graphene.

Note that the scattering amplitude methods presented here are
applicable to 2D graphene superlattices in general and not just to
1D periodic systems.
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Fig. 2. (a) Schematic diagram of a Kronig–Penney type of scalar potential applied to gra

(b) Number of Dirac points (not including spin and valley degeneracies) in a graphene

L¼20 nm, eL ¼ 33 meV) versus wavevector near the Dirac point for a graphene supe

(d)–(f) Same quantities as in (a)–(c) for a graphene superlattice formed by a sinusoida
5. Emerging new massless Dirac fermions in a strong external
periodic scalar potential

If the external periodic scalar potential applied to graphene is
sufficiently strong, new branches of massless Dirac fermions are
generated near the original Dirac cone (i.e., zero-energy modes)
[8–11]. Note that these new zero-energy modes are different from
the new massless Dirac fermions discussed in Section 2, which
have higher energies and are generated at the supercell Brillouin
zone boundary centers (k¼Gm/2) no matter how weak the
perturbing potential is. As shown in Fig. 2, the number of zero-
energy Dirac modes increases with the amplitude of the external
periodic scalar potential. These new zero-energy modes could
have distinguishable signatures in quantum Hall [8] or transport
measurement [9].

The new zero-energy modes are generated when the applied
periodic scalar potential V(x) has both even and odd symmetries
(Fig. 2 or 3(a) and (b)). When the odd symmetry is broken
(Fig. 3(c)), new massless Dirac fermions are generated but the
energy position could be different from zero (Fig. 3(d)). But, if the
even symmetry is broken (Fig. 3(e)), new massless Dirac fermions
are not generated (Fig. 3(f)). However, even in these broken-
symmetry cases, the signatures of the modified electronic
bandstructure could be captured in, e.g., Landau level
measurements [8].
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It is worthwhile to focus on the conditions on the external
periodic potential under which the number of zero-modes jumps,
as shown by the steps in Fig. 2(b) and (e). We call these systems at
the jump special graphene superlattices (SGSs) [5,8]. In an SGS,
the group velocity along the ky direction vanishes. Fig. 4 shows
that the energy dispersion in an SGS is quasi-1D and the
pseudospin in an SGS is either parallel or antiparallel to the +kx

(or periodic) direction [5]. Because of this quasi-1D electron
energy bandstructure in an SGS, the group velocity of electronic
−

k
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E 
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E 
( ε
L)

−
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ky

E (k)

s =−1
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Special graphene superlattice
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Fig. 4. (a) Schematic diagram showing the electronic energy dispersion relations and

bandstructure in graphene. (c) and (d): Same quantity as in (a) and (b), respectively, for t

where eL ¼ ‘v0=L). Red and blue arrows in (c) represent the ‘right’ and the ‘left’ pseudos

legend, the reader is referred to the web version of this article.)
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versus ky with kx¼0 in a graphene superlattice formed by the periodic potential in (a) w

V(x) with a perturbation that breaks the odd symmetry. The perturbing potential DV

L=8oxo3L=8 and zero otherwise. (e) and (f) Same quantities as in (a) and (b) for a

perturbing potential DVðxÞ within one unit cell is given by +10% and �10% of the poten

otherwise.
states are almost the same over a wide region in momentum
space; and this has led to the prediction that SGSs can be used for
electron beam supercollimation [5].
6. Summary

The electronic structure of graphene under a general external
periodic scalar potential is modified from that of graphene in
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several highly unexpected ways: (i) the group velocity is
anisotropically renormalized in momentum space and (ii) new
massless Dirac fermions are generated at the supercell Brillouin
zone boundary. Moreover, when a strong 1D periodic scalar
potential is applied, new zero-energy modes emerge. Under
certain conditions, the group velocity of charge carriers along
the direction perpendicular to the 1D periodic direction of the
superlattice potential vanishes. In this special class of 1D
graphene superlattices, the electron energy bandstructure and
pseudospin structure are quasi-1D and these properties can be
used in collimating the electron flow. With a 1D external periodic
vector potential applied to graphene, on the other hand, the group
velocity of charge carriers near the original Dirac point is reduced
isotropically. The analytical and numerical methods discussed in
this paper can be used in further investigating the novel
properties of quasiparticles in 1D and 2D graphene superlattices.
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