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The consistency between the exchange-correlation functional used in pseudopotential construction and in the
actual density functional theory calculation is essential for the accurate prediction of fundamental properties of
materials. However, routine hybrid density functional calculations at present still rely on generalized gradient
approximation pseudopotentials due to the lack of hybrid functional pseudopotentials. Here, we present a scheme
for generating hybrid functional pseudopotentials, and we analyze the importance of pseudopotential density
functional consistency for hybrid functionals. For the PBE0 hybrid functional, we benchmark our pseudopotentials
for structural parameters and fundamental electronic gaps of the Gaussian-2 (G2) molecular dataset and some
simple solids. Our results show that using our PBE0 pseudopotentials in PBE0 calculations improves agreement
with respect to all-electron calculations.
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I. INTRODUCTION

Density functional theory (DFT) methods have proven to be
successful for understanding and predicting the physical and
chemical properties of materials. With approximations such as
the local density approximation (LDA) [1] and the generalized-
gradient approximation (GGA) [2], DFT can reproduce many
fundamental properties of solids, such as lattice constants and
atomization energies [3]. However, the LDA and the GGA
usually underestimate the fundamental band gaps of semi-
conductors and insulators [4]. The use of hybrid functionals
in DFT, which combine part of the exact Hartree-Fock (HF)
exchange with local or semilocal approximations (PBE0, HSE,
B3LYP) [5–7], has become a popular option for addressing this
problem.

The pseudopotential approximation is often used to reduce
the complexity of DFT calculations. By replacing the nucleus
and core electrons with a finite shallow potential, the solution of
the Kohn-Sham equation is simplified because of the reduced
number of electrons in the system. Accuracy is preserved
because the core electrons are not involved in chemical bonding
[8,9].

Even though hybrid density functional calculations using
pseudopotentials are currently very popular, these calculations
solve the Kohn-Sham equation using pseudopotentials con-
structed at a lower rung of Jacob’s ladder [10], such as the GGA.
This is due to a lack of hybrid functional pseudopotentials
available to the community. The mismatch of the level of
the density functional approximation between pseudopotential
construction and target calculation is theoretically unjustified,
and could lead to reduced accuracy [11]. In this work, we
have developed hybrid density functional pseudopotentials to
restore pseudopotential consistency in hybrid functional DFT
calculations.

*rappe@sas.upenn.edu

Prior to this work, Hartree-Fock pseudopotentials devel-
oped over the past decade [12,13] have proven to be useful
in calculations with correlated electrons. The inclusion of HF
exchange leads to stronger electron binding and mitigates the
underbinding errors of the GGA. It has been suggested that
HF pseudopotentials may be useful in a variety of contexts,
such as modeling systems with negatively charged reference
states [13] and in diffusion Monte Carlo simulations [14,15].
The successful development of HF pseudopotentials [13] has
opened the possibility of constructing hybrid pseudopotentials
by including an exact exchange component into GGA po-
tentials. Previous work demonstrated PBE0 pseudopotentials
for gallium, indium, and nitrogen atoms [16]. However, such
pseudopotentials were simple linear combinations of the HF
pseudopotential and the GGA pseudopotential without self-
consistently solving hybrid PBE0 all-electron calculations.

In this paper, we construct consistent pseudopotentials
(Sec. II) for the PBE0 hybrid density functional, following
the Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) method [8].
This work extends Ref. [13], which was solely concerned with
HF pseudopotentials, by considering self-consistent solutions
of a pseudoatom under PBE0, thus moving beyond the non-
self-consistent scheme of Ref. [16]. We benchmark the hybrid
functional pseudopotential accuracy for diatomic molecules in
the G2 dataset and for simple solids, focusing on geometric
parameters and band gaps (Sec. III). We find that the use
of consistent PBE0 pseudopotentials improves the accuracy
of PBE0 calculations of molecules and solids. Using these
pseudopotentials, the mean absolute relative error (MARE) of
highest occupied molecular orbital–lowest unoccupied molec-
ular orbital (HOMO-LUMO) gaps of molecules is reduced to
4.5% from the MARE of 7.96% obtained by inconsistently
using PBE pseudopotentials in PBE0 calculations. Likewise,
the MARE of band gaps of simple solids is reduced to 6.56%
from 7.90%. The use of consistent PBE0 pseudopotentials
was found to have a relatively small effect on bond lengths
(MARE reduced to 0.53% from 0.71%) and lattice parameters
(MARE reduced to 0.57% from 0.66%). The mean absolute
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errors (MAEs), which illustrate the absolute deviation of
using pseudopotentials from all-electron PBE0 calculations,
indicates the same performance. The PBE0 pseudopotential
generator is implemented in the OPIUM software package [17].

II. THEORETICAL METHODS

In this section, we provide an overview of the standard
theory behind pseudopotential construction before discussing
the special considerations that must be taken into account for
hybrid functional pseudopotentials.

A. Pseudopotential construction

The all-electron (AE) wave functions and eigenvalues of an
atom are the foundation for the construction of all pseudopo-
tentials. The AE Kohn-Sham (KS) equation is

[− 1
2 �2 +Vion(r) + VH[ρ(r)] + Vxc[ρ(r)]]ψAE

i (r)

= εAE
i ψAE

i (r), (1)

where − 1
2�2 is the single-particle kinetic-energy operator,

Vion(r) is the ionic potential that electrons feel from the
nucleus, VH[ρ(r)] is the Hartree potential, and Vxc[ρ(r)] is
the exchange-correlation potential, which are functionals of
the charge density ρ(r). The all-electron wave function is
denoted by ψAE

i (r), and the all-electron energy eigenvalues
are denoted by εAE

i . For an atom, Vion(r) = −Z
r

, where Z is
the nuclear charge. Representing the wave function in spherical
coordinates, r = |r|, and each ψAE

i (r) can be written as

ψAE
nlm(r) = φAE

nl (r)

r
Ylm(θ,φ), (2)

where n,l,m are principal, angular, and spin quantum numbers,
and θ and φ are the corresponding angles from spherical
coordinates. φAE

nl is the radial wave function and Ylm(θ,φ) are
the spherical harmonics. Now, Eq. (1) can be simplified in
terms of φnl :(

−1

2

d2

dr2
+ l(l + 1)

r2
+ VKS(r)

)
φAE

nl (r) = εAE
nl φAE

nl (r), (3)

where VKS(r) = Vion(r) + VH(r) + Vxc(r). Instead of solving
the full all-electron KS equation as in [Eq. (1)], it is compu-
tationally more efficient to solve the radial equation [Eq. (3)]
self-consistently to obtain the radial wave function, φAE

nl (r),
and corresponding eigenvalue, εAE

nl .
In most molecular or solid systems, the valence electrons of

atoms within the system are more crucial than core electrons,
because they are more involved in chemical bonding. The core
electrons mostly contribute to the electrostatic shielding of
the nucleus. The AE wave functions of core electrons can
contain rapid oscillations, which makes them hard to represent
in plane-wave basis sets and causes further difficulty in solving
Eq. (3) numerically. Therefore, it is advantageous to construct
pseudopotentials, which capture the valence electron behavior
and also eliminate the need to recalculate the core-electron
wave functions.

Replacing the potential by a pseudopotential operator, the
KS equation can be written as[

−1

2

d2

dr2
+ l(l + 1)

2r2
+ V̂PS

]
φPS

nl (r) = εPS
nl φPS

nl (r), (4)

where V̂PS is the screened pseudopotential operator. Note that
such an operator is usually nonlocal [it is an integral operator
on φPS

nl (r)]. Similar to VKS, V̂PS = V̂ PS
ion + VH(r) + Vxc(r). εPS

nl is
the pseudoeigenvalue, and φPS

nl (r) is the pseudo-wave-function.
Standard methods for constructing these quantities are given
in Appendix A.

B. Hartree-Fock pseudopotentials

Pseudopotentials can be constructed by solving the all-
electron (AE) and pseudopotential (PSP) equations, Eqs. (1)
and (4), above using different exchange-correlation function-
als, such as the LDA or the GGA. It is crucial that the exchange-
correlation functional used for pseudopotential construction is
the same as the functional used in the target calculation [11].
When the exchange-correlation functional contains the Fock
operator, as is the case for the hybrid functionals presently in
widespread use, there are special considerations that must be
taken into account in constructing the pseudopotential. Here,
we consider the case of Hartree-Fock (HF) pseudopotentials,
where the exchange-correlation functional is just the Fock
operator, and we will examine the PBE0 hybrid functional in
the next subsection, where the Fock operator and PBE ex-
change correlation are combined. For the HF pseudopotential,
instead of solving the KS equation as in Eq. (3), we solve the
Hartree-Fock equation,

(T̂ + Vion(r) + V̂HF[{ψn′l′ }])ψnl(r) = εnlψnl(r), (5)

where ψnl(r) still takes the form in Eq. (2) (dropping the AE
superscript for simplicity), Vion(r) is the ionic potential, and
V̂HF[{ψnl}] is the HF potential, which depends on the set of
wave functions {ψnl}. It is separated into two terms,

V̂HF[{ψn′l′ }] = V̂H[{ψn′l′ }] + V̂x[{ψn′l′ }]. (6)

The Hartree potential takes the form

〈ψnl|V̂H[{ψn′l′ }]|ψnl〉 =
∑
n′l′

∫
d3r′d3r

|ψn′l′ (r′)|2|ψnl(r)|2
|r − r′| ,

(7)
and the exact exchange operator acts as

〈ψnl|V̂x[{ψn′l′ }]|ψnl〉

=
∑
n′l′

∫
d3r′d3r

ψnl(r)ψ∗
n′l′(r)ψn′l′ (r′)ψ∗

nl(r
′)

|r − r′| . (8)

Direct evaluation of the Fock integral above [Eq. (8)]
requires introduction of angular variables for orbitals with
nonzero angular momentum. This would result in nonspherical
pseudopotentials, as well as introducing complexity into the
pseudopotential generation process, which would then depend
on the exact atomic configuration, including magnetic quantum
numbers. To circumvent these issues, we make use of a
spherical approximation to construct spherical Hartree-Fock
pseudopotentials. Spherical approximations are routinely used
to construct spherical LDA and GGA pseudopotentials, which
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are widely used successfully in electronic and structural cal-
culations.

We use the Hartree-Fock spherical approximation of Froese
Fischer [18] based on the concept of the “average energy of
configuration” introduced by Slater [19]. Consider all atomic
configurations where the ith shell, with principal and total
angular quantum numbers ni and li , is occupied with weight
wi , that is, all permutations of wi electrons occupying the
(2li + 1)-degenerate shell (nili).

The average energy of all such atomic configurations,
expressed as a sum over pairs of atomic orbitals (nili) and
(nj lj ), is

EHF
av =

m∑
i=1

wi

[
I (nili ,ni li) +

(
wi − 1

2

)

×
2li∑

k=0

fk(li ,li)F
k(nili ,ni li)

]

+
m∑

i=2

{ i−1∑
j=1

wiwj

[
F 0(nili ,nj lj )

+
(li+lj )∑

k=|li−lj |
gk(li ,lj )Gk(nili ,nj lj )

]}
. (9)

Here, the first summation represents the one-electron contri-
bution,

I (nl,nl) = −1

2

∫ ∞

o

φ∗
nl(r)

(
d2

dr2
+ 2Z

r
− l(l + 1)

r2

)
φnl(r)dr.

(10)

The other terms contain the interaction terms between pairs
of electrons. Fk and Gk are the Hartree and exchange energy
Slater integrals,

Fk(nl; n′l′) =
∫ ∞

0

∫ ∞

0
φnl(r)φnl(r)

rk
<

rk+1
>

φn′l′(r
′)φn′l′(r

′)drdr ′

(11)

and

Gk(nl; n′l′) =
∫ ∞

0

∫ ∞

0
φnl(r)φn′l′(r

′)

× rk
<

rk+1
>

φn′l′(r)φnl(r
′)drdr ′, (12)

where r< (r>) is the lesser (greater) of r and r ′. Details of
the derivation are provided in Appendix C, and the numerical
coefficients fk and gk are tabulated in Ref. [19]. We note that
the integrals in Eqs. (10)–(12) for the average energy depend
only on the radial coordinate, and hence are a simplification
of Eqs. (7) and (8).

Taking functional derivatives of Eq. (9) with respect to
the radial wave functions φi(r), we arrive at Hartree-Fock
equations for the wave functions of a Hartree-Fock atom. The
set of m radial wave functions φi, i = 1, . . . ,m, obeys the
coupled set of equations

L̂ φi(r) = 2

r

[
Yi[{φ}](r) φi(r) + Xi[{φ}](r)

] +
m∑

j=1

εijφj (r),

(13)

where L̂ = d2

dr2 − 2Vion(r) − li (li+1)
r2 is the single-particle

part of the Hartree-Fock Hamiltonian, (2/r)Yi[{φ}](r) and
(2/r)Xi[{φ}](r) are the Hartree and exchange terms [20], and
εij are Lagrange multipliers for orthogonality and normaliza-
tion of radial wave functions. The detailed derivations of all
these terms are presented in Appendix C.

Once the HF equation is constructed, we solve these
equations self-consistently in a similar way to DFT pseudopo-
tentials. The HF pseudo-wave-functions φPS

nl (r) are constructed
using the same RRKJ procedure [Eq. (A1)] as for the DFT
pseudo-wave-functions. The screened pseudopotential is ob-
tained by inverting Eq. (5). Similar to DFT pseudopotentials,
we descreen by subtracting the Hartree and exchange contri-
butions of the valence electrons [cf. Eq. (A2)],

V PS
ion,l(r) = V PS

l (r) − 2

r
Yi[{φval}](r) − 2Xi[{φval}](r)

rφi(r)
, (14)

with Yi and Xi obtained from Eq. (13). The HF pseudopo-
tential constructed this way has a long-range non-Coulombic
component of the tail, which does not decay as 1/r . This is
a consequence of the nonlocal nature of the Fock operator
[13]. To resolve this issue, we make use of the localization
procedure of Trail and Needs [12]. The tail is forced to
asymptotically approach 1/r , and the potential is modified
within the localization radius to ensure consistency with the
all-electron eigenvalues [13].

C. PBE0 pseudopotentials

As hybrid functionals are a mix of HF and DFT ingredients,
we generate a hybrid pseudopotential using the HF pseudopo-
tential approach as a foundation, making use of the spherical
averaging procedure and localization procedure of the previous
section and Ref. [13]. The PBE0 density functional [21] was
developed based on the PBE exchange-correlation functional
[2]; the PBE0 form is

EPBE0
xc = aEHF

x + (1 − a)EPBE
x + EPBE

c , (15)

where a = 0.25 for the PBE0 functional. As we use the spher-
ical approximation for EHF

x [Eq. (9)], we likewise evaluate
the PBE exchange-correlation functional using a spherical
approximation. Since EPBE

x is a functional of density only, this
method consists of evaluating EPBE

x in Eq. (15) at the charge
density, again taken to be the average over all possible magnetic
quantum number configurations,

ρ(r) =
∑
nlm

fnlm|ψ(r)nl|2 = 1

4π

∑
ni li

fni li |φni li (r)|2, (16)

where ρ(r) is the spherical symmetric charge density, fni li =
wi (as in Appendix B) is the occupation number for each
orbital (nili), and fnlm = fnlm′ is the occupation number
for each magnetic quantum number (nlm). Upon including
EPBE

x and EPBE
c into the total energy expression Eq. (9), and

taking functional derivatives, the coupled set of HF equations
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[Eq. (13)] becomes

L̂φi(r) = 2

r

[
Yi(r)φi(r) + 1

4
Xi(r)

]
+ 3

4
V PBE

x (r)

+V PBE
c (r) +

m∑
j=1

δli lj εijφj (r), (17)

where the additional terms are the PBE exchange potential
V PBE

x (r) and the PBE correlation potential Vc(r). The self-
consistent solution of these coupled equations is found iter-
atively, in a similar fashion to the HF equations [Eq. (13)]. At
each iteration, we calculate the Fock exchange term [Xi(r)]
from the wave functions of the previous iteration, and the PBE
terms (V PBE

x , V PBE
c ) from the density of the previous iteration.

The pseudopotential construction is performed in the same
way as for HF pseudopotentials, including RRKJ pseudization,
descreening, and localization of the non-Coulombic tail.

III. TESTING OF PBE0 PSEUDOPOTENTIALS ON
MOLECULAR AND SOLID-STATE SYSTEMS

We test the accuracy of our PBE0 pseudopotentials and the
importance of pseudopotential density functional consistency
for PBE0. We compare PBE calculations using PBE pseudopo-
tentials (PBE), PBE0 calculations using PBE0 pseudopoten-
tials (PBE0), and PBE0 calculations using PBE pseudopoten-
tials (PBE-PBE0). The last case is currently the most widely
used method of performing PBE0 calculations. The DFT code
we use is QUANTUM-ESPRESSO [22]. Each single molecule is
put into a 20.0 Å cubic unit cell, and its energy and geometry
are computed with a kinetic energy cutoff Ecut = 25.0 Hartree.
All these calculations are spin-polarized. The total energy con-
vergence threshold and force convergence threshold are set to
0.005 mHartree/cell and 0.05 mHartree/Å. The reference
all-electron calculations are performed using FHI-aims [23]
with tight basis settings. The molecular and crystal structural
optimizations are converged within 3 × 10−3 mHartree/cell
for total energy, and the forces are converged within 0.003
mHartree/Å.

In Table I, we show the bond lengths for diatomic molecules
that belong to the G2 data set [5], and we compare each of
our pseudopotential calculations with PBE0 all-electron values
[24]. The use of the PBE pseudopotential in the PBE0 calcula-
tion gives a MARE of 0.71%. Using the PBE0 functional with
the PBE0 pseudopotential, the MARE reduces to 0.53%. This
indicates that pseudopotential density functional consistency
improves bond lengths for PBE0.

One of the reasons for using hybrid density functionals is
that they predict band structures and ionization potentials (IPs)
more accurately than the PBE functional [16,25,26]. Table II
shows the HOMO eigenvalues for diatomic molecules within
the G2 dataset, calculated from different density functionals
and compared with HOMO levels calculated from all-electron
calculations. As expected, the difference between PBE HOMO
eigenvalues and all-electron PBE0 values is the largest among
the three computed cases. The use of consistent PBE0 pseu-
dopotentials improves the MARE of the HOMO eigenvalues by
a small amount [to 6.66% (PBE0) from 6.79% (PBE-PBE0)].

TABLE I. The bond lengths of the diatomic molecules from the
G2 data set calculated from PBE, PBE-PBE0, and PBE0. The all-
electron data are calculated using FHI-aims [23]. Units in Å. The
MARE is calculated as MARE = 1

N

∑N

i
|bi−bAE|

bAE
× 100, where N is

the number of species, bi is the bond length of each species, and bAE is
the all-electron value. The MAE is the average absolute deviation over
the presented molecules and is calculated as MAE = 1

N

∑N

i |bi −
bAE|. MARE and MAE of PBE calculations are taken relative to AE-
PBE, while that of PBE0 calculations are taken relative to AE-PBE0.
The experimental values are also listed for reference. The rest of the
tables are of the same format.

Molecule PBE AE-PBE PBE-PBE0 PBE0 AE-PBE0 Expt.a

H2 0.753 0.750 0.747 0.747 0.746 0.742
LiH 1.600 1.603 1.595 1.596 1.595 1.595
BeH 1.348 1.355 1.343 1.351 1.348 1.343
CH 1.137 1.136 1.122 1.122 1.124 1.120
NH 1.070 1.050 1.056 1.041 1.041 1.045
OH 0.983 0.983 0.975 0.966 0.983 0.971
FH 0.928 0.93 0.914 0.912 0.918 0.917
Li2 2.719 2.728 2.725 2.718 2.723 2.670
LiF 1.578 1.574 1.567 1.566 1.562 1.564
CN 1.174 1.175 1.159 1.159 1.159 1.172
CO 1.135 1.136 1.123 1.122 1.122 1.128
N2 1.081 1.103 1.069 1.069 1.089 1.098
NO 1.132 1.157 1.113 1.138 1.139 1.151
O2 1.212 1.218 1.218 1.217 1.192 1.207
F2 1.420 1.413 1.382 1.382 1.376 1.412

MARE (%) 0.61 0.71 0.53
MAE (Å) 0.007 0.008 0.006

aReference [24].

In Table III, we present the HOMO-LUMO gap for the
same dataset as in Table II. Our PBE0 pseudopotentials reduce
the MARE of the HOMO-LUMO gap to 4.55% (PBE0) from
7.96% (PBE-PBE0). Similar to bond length calculations, the

TABLE II. HOMO eigenvalues with PBE, PBE-PBE0, and PBE0
methods. Energies are in eV.

Molecule PBE AE-PBE PBE-PBE0 PBE0 AE-PBE0

H2 −10.31 −10.34 −11.96 −11.96 −11.99
LiH −3.89 −4.35 −5.45 −5.44 −5.44
BeH −4.76 −4.68 −5.77 −5.20 −5.69
CH −5.91 −5.84 −7.43 −7.43 −7.45
NH −7.98 −6.69 −9.78 −9.76 −9.76
OH −7.06 −7.14 −8.81 −8.72 −7.00
FH −9.33 −9.61 −11.43 −11.43 −11.86
Li2 −3.20 −3.16 −3.99 −3.75 −3.72
LiF −6.08 −6.09 −7.77 −7.85 −7.96
CN −9.30 −9.38 −10.74 −10.94 −9.32
CO −9.01 −9.03 −10.41 −10.42 −10.72
N2 −10.07 −10.22 −11.93 −12.20 −12.20
NO −4.74 −4.50 −6.25 −6.29 −4.60
O2 −6.71 −6.91 −8.68 −8.70 −8.91
F2 −9.41 −9.46 −11.50 −11.58 −11.68

MARE (%) 3.33 6.79 6.66
MAE (eV) 3.15 0.40 0.38
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TABLE III. HOMO-LUMO gap (in eV) of diatomic molecules in
the G2 dataset with different functionals.

Molecule PBE AE-PBE PBE-PBE0 PBE0 AE-PBE0 Expt.

H2 10.26 10.84 11.94 11.94 13.10 11.8a

LiH 2.57 2.81 4.04 4.48 4.45 4.0410b

BeH 2.64 2.31 4.44 4.42 4.15 4.200b

CH 2.06 1.77 3.95 3.51 3.60
NH 3.95 6.45 7.27 7.34 7.16
OH 1.12 6.54 4.77 4.92 4.25
FH 8.19 8.76 10.92 10.93 11.80 11.30a

Li2 1.41 1.43 2.75 2.47 2.50 2.22b

LiF 4.29 4.62 6.41 6.50 7.02 6.16b

CN 1.99 1.72 4.67 4.74 4.48 9.78b

CO 6.98 6.98 9.61 9.62 10.04 10.29b

N2 7.66 8.24 10.94 10.94 11.71 11.05b

NO 1.30 1.22 3.50 2.88 2.86 3.05b

O2 2.40 2.31 5.74 6.09 6.10 6.06c

F2 3.32 3.63 7.77 7.79 8.34 7.47b

MARE (%) 14.82 7.96 4.55
MAE (eV) 0.78 0.50 0.39

aReference [27].
bReference [28], G4 basis set.
cReference [29].

consistency of the density functional between pseudopotential
construction and DFT calculation reduces the error. While the
use of the PBE pseudopotential for PBE0 DFT calculation
results in fair accuracy, it can be improved by using a pseu-
dopotential constructed with a consistent density functional.

We have also tested our pseudopotentials in solid-state
calculations. The lattice constants and band gaps for some
simple solids associated with the first 20 elements in the
Periodic Table are shown in Tables IV and V. Similar to
molecular bond lengths, the density functional consistency also
influences the lattice constants of solids. By using consistent
pseudopotentials, the MARE of lattice constants of these
solids are slightly improved to 0.57% (PBE0) from 0.66%
(PBE-PBE0). As expected, the PBE calculation significantly
underestimates the band gaps. The two PBE0 cases increase

TABLE IV. Solid-state calculation with PBE, PBE-PBE0, and
PBE0. The lattice constants of simple solids associated with the first
20 elements are listed. The lattice constant is in units of Å.

Solids PBE AE-PBE PBEPBE0 PBE0 AE-PBE0 Expt.a

Si 5.484 5.472 5.452 5.446 5.448 5.430
GaN 4.541 4.549 4.539 4.537 4.536 4.523
MgO 4.324 4.305 4.310 4.308 4.204 4.207
NaCl 5.710 5.701 5.663 5.639 5.634 5.595b

Diamond 3.562 3.563 3.562 3.563 3.564 3.567
Graphene 2.476 2.469 2.460 2.460 2.453 2.464c

BN (cubic) 3.664 3.665 3.639 3.639 3.598 3.616
SiC 4.403 4.404 4.375 4.370 4.349 4.358

MARE (%) 0.17 0.66 0.57
MAE (Å) 0.007 0.027 0.023

aReference [7].
bReference [26].
cReference [30].

TABLE V. Solid-state calculation with PBE, PBE-PBE0, and
PBE0. The band gap of simple solids within the first 20 elements
are listed. The band gap is in eV.

Solids PBE AE-PBE PBEPBE0 PBE0 AE-PBE0 Expt.a

Si 0.58 2.54 1.79 1.78 1.63 1.17
GaN 1.81 1.55 3.58 3.56 3.54 3.30
MgO 4.38 4.44 7.97 7.38 7.28 7.22
NaCl 3.67 4.97 6.71 7.28 7.14 8.50b

Diamond 5.63 5.58 5.53 5.54 6.08 5.48
BN (cubic) 4.49 4.45 6.58 6.56 6.54 6.22
SiC 1.34 1.38 2.98 2.96 2.95 2.42

MARE (%) 18.02 5.29 3.78
MAE (eV) 0.53 0.28 0.18

aReference [7].
bReference [26].

the band gaps by a large amount compared to PBE calculation.
The effect of density functional consistency is even more
important for the band gaps than for the lattice constants:
the MAREs of the band gaps are improved to 3.78% (PBE0)
from 5.29% (PBE-PBE0). Together with the calculations from
molecular properties, we may conclude that pseudopotential
density functional inconsistency contributes a systematic error
of the order of 1% for PBE0 for the systems tested.

IV. CONCLUSION

We have developed a consistent PBE0 pseudopotential
and successfully implemented it in the OPIUM pseudopoten-
tial generation code. We have also shown that our PBE0
pseudopotentials behave well when implementing them in
DFT calculations. Our benchmarking tests on the G2 dataset
and solids indicate that the systematic error associated with
pseudopotential density functional consistency is of the or-
der of 1%. Using the PBE0 pseudopotential in PBE0 DFT
calculations leads to small improvements in bond length and
lattice parameter accuracy. For these quantities, the errors
of the pseudopotential calculations compared to all-electron
calculations are typically less than 1%. Using consistent PBE0
pseudopotentials reduces these errors by around 0.1% (i.e.,
pseudopotential density functional consistency accounts for
about 1/10th of the 1% errors in these geometrical quantities).
On the other hand, for the HOMO-LUMO gaps, the error
of the pseudopotential calculations compared to all-electron
calculations is 8%, and is reduced to 4.5% by using PBE0
pseudopotentials. Pseudopotential density functional consis-
tency, therefore, accounts for a significant amount of the error
between pseudopotential and all-electron calculations, for the
electronic excitation energies. A similar trend is obtained for
the band gaps of solids tested. From these results, we con-
clude that using PBE pseudopotentials in PBE0 calculations
leads to acceptable results for small molecules and simple
solids, while using PBE0 pseudopotentials instead will likely
result in a small but consistent increase in accuracy. Future
directions include further testing of PBE0 pseudopotentials for
more complex systems, the inclusion of relativistic effects for
heavy atoms, and the development of other hybrid functional
pseudopotentials, including range-separated hybrids [31].
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APPENDIX A: DETAILS OF PSEUDOPOTENTIAL
CONSTRUCTION

Norm-conserving pseudo-wave-functions [32] should obey
the following criteria:

(i) φPS
nl (r) = φAE

nl (r),
dφPS

nl (r)

dr
= dφAE

nl (r)

dr
,

d2φPS
nl (r)

dr2
= d2φAE

nl (r)

dr2
for r � rc,

(ii) εPS
nl = εAE

nl ,

(iii)
〈
φPS

nl

∣∣φPS
nl

〉 = 〈
φAE

nl

∣∣φAE
nl

〉 = 1,

(iv)
d

dε

(
d ln φPS

nl (r)

dr

)∣∣∣∣
R,εnl

= d

dε

(
d ln φAE

nl (r)

dr

)∣∣∣∣
R,εnl

,

R � rc.

Together, they guarantee wave-function smoothness and con-
tinuity, that the solutions of the pseudosystem are accurate
representations of the corresponding all-electron system, and
that the error of eigenenergy shifts caused by chemical bonding
is small for gentle changes to the wave functions and density
[32], hence improving the transferability or applicability of the
pseudopotential in different chemical environments.

In the RRKJ method [8], the pseudo-wave-function is
constructed as a sum of Nb spherical Bessel functions jl(qkr):

φPS
nl (r) =

{∑Nb

k=1 cnlkrjl(qkr), r < rc,

φAE
nl (r), r � rc,

(A1)

where the coefficients cnlk are chosen to normalize the wave
function and satisfy continuity constraints at rc. Additional
cnlk coefficients improve plane-wave convergence. Once the
pseudo-wave-function is constructed, the pseudopotential is
obtained by inverting the pseudo-KS equation above [see
Eq. (4)]. In applications of the pseudopotential in solid-state
or molecular calculations, the screening effect of the valence
electrons will generally be different from that in the atomic cal-
culation. Therefore, the valence electron screening is removed
to obtain a descreened pseudopotential, V PS

ion,l(r), for each
angular momentum l, by subtracting Hartree and exchange-
correlation potentials from the screened pseudopotential,

V PS
ion,l(r) = V PS

l (r) − VH[ρval](r) − Vxc[ρval](r), (A2)

where VH[ρval](r) and Vxc[ρval](r) are calculated only from
the valence charge density. The full pseudopotential, written

in semilocal form, is then

V̂ PS
ion =

∑
lm

V PS
ion,l(r) |Ylm〉〈Ylm|

=Vloc(r) +
∑

l


V̂ SL
l . (A3)

In the second line, the potential is expressed as the sum of a
local potential Vloc(r) and semilocal corrections 
V̂ SL

l , which
are projections in the angular coordinates and are local in the
radial coordinate. To reduce the memory cost of computation,
we write the semilocal pseudopotential in a fully separable
nonlocal Kleinman-Bylander [33] form

V̂ PS = V̂ loc +
∑

l


V̂ NL
l ,


V̂ NL
l = 
V̂ SL

l

∣∣φPS
nl

〉〈
φPS

nl

∣∣
V̂ SL
l〈

φPS
nl

∣∣
V̂ SL
l

∣∣φPS
nl

〉 . (A4)

Writing the pseudopotential in this form ensures that
semilocal and nonlocal pseudoatoms have the same eigen-
values and wave functions for the reference configuration.
The transferability of such a nonlocal pseudopotential, to
configurations other than the reference, can be improved
by applying the designed nonlocal strategy, which involves
modifying the projectors of Eq. (A4) [9].

We implement pseudopotential construction on a radial
grid, with accuracy depending on the radial grid size. The use
of a logarithmic grid ensures enough grid points near the core to
describe oscillations of the all-electron wave functions in that
region while capturing the tail of the wave functions at large
distances from the core to sufficient accuracy. The logarithmic
grid is defined as

ri = aZ−1/3e(i−1)b, i = 1, . . . ,N, (A5)

where N is the number of grid points, spanning a sufficiently
large real-space range (rmax), Z is the core charge, a controls
the position of the first grid point, and b determines the grid
spacing. We use values of a = 0.0001 and b = 0.013. The
number of grid points N is obtained by setting rmax = 80 Bohr.

APPENDIX B: DERIVATION OF HARTREE-FOCK
AVERAGE ENERGY

As a preliminary to deriving the average energy formula
Eq. (9), we collect several useful quantities. The Hartree
potential due to an electron in the state (nlm) is

V
(nlm)
H (�r) =

∫
d3r ′ |ψnlm(�r ′)|2

|�r − �r ′|

=
∫ ∞

0
r ′2dr ′d�′ φnl(r ′)2|Ylm(�′)|2

|�r − �r ′| . (B1)

Using the expansion,

1

|�r − �r ′| =
∞∑

k=0

k∑
m=−k

4π

2k + 1
(−1)m

rk
<

rk+1
>

Yk,−m(�)Yk,m(�′),

(B2)
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where r< (r>) is the lesser (greater) of r and r ′, we write Eq. (B1) as

V
(nlm)
H (�r) =

∑
k

∫ ∞

0
r ′2dr ′ rk

<

rk+1
>

√
4π

2k + 1
Y ∗

k,0(�) ck(l,m,l,m) φnl(r
′)2

=
∫ ∞

0
r ′2dr ′ 1

r>

φnl(r
′)2 +

2l∑
k=1

∫ ∞

0
r ′2dr ′ rk

<

rk+1
>

√
4π

2k + 1
Y ∗

k,0(�) ck(l,m,l,m) φnl(r
′)2. (B3)

Here, we make use of the symbols

ck(l,m,l′,m′) =
√

4π

2k + 1

∫
Y ∗

lm(�)Yk,m−m′(�)Yl′m′ (�)d�

= (−1)−m
√

2l + 1
√

2l′ + 1

(
l k l′
0 0 0

)(
l k l′

−m m − m′ m′

)
(B4)

for Gaunt’s formula, in terms of Wigner 3j -symbols. In the second line of Eq. (B3), we have separated the k = 0 and k > 0
components, because the latter vanishes when averaged over m. Therefore, the Hartree energy of a pair of electrons (ij |ij ), in
orbitals (ni,li) and (nj ,lj ), averaged over the magnetic quantum number mj of the second electron, is simply

〈(ij |ij )〉mj
=

∫ ∞

0
dr φni li (r)2

∫ ∞

0
dr ′ 1

r>

φnj lj (r ′)2

= F 0(nili ,nj lj ).

(B5)

The exchange integral for a pair of electrons in orbitals (ni,li) and (nj ,lj ) can be calculated in a similar fashion. Using Eqs. (B2)
and (B4), we get

(ij |ji) =
∫

d3r d3r ′ ψ
∗
ni limi

(�r)ψnj lj mj
(�r)ψ∗

nj lj mj
(�r ′)ψnilimi

(�r ′)

|�r − �r ′|
=

∑
kq

∫
Y ∗

limi
(�)Ylj mj

(�)Ykq(�)d�

∫
Y ∗

lj mj
(�′)Ylimi

(�′)Ykq∗(�′)d�′

×
∫

rk
<

rk+1
>

4π

2k + 1
φni li (r)φnj lj (r)φnj lj (r ′)φni li (r

′)dr dr ′

=
∑

k

ck(li ,mi,lj ,mj )2
∫

rk
<

rk+1
>

φni li (r)φnj lj (r)φnj lj (r ′)φni li (r
′)dr dr ′. (B6)

For the average of the exchange integral over mj , we get

〈(ij |ji)〉mj
= 1√

(2li + 1)(2lj + 1)

∑
k

ck(li ,0,lj ,0)Gk(nili ,nj lj ). (B7)

To calculate the average total energy of an atomic configuration, we must consider the Hartree and exchange energies of all
pairs of electrons. First consider the case in which the electrons are in the same orbital (ni = nj , li = lj ). In this case, since
Gk(nili ,ni li) = Fk(nili ,ni li), we can combine Eqs. (B5), (11), and (B7) to obtain

〈(ij |ij ) − (ij |ji)〉 = wi(wi − 1)

2

∑
k

fk(li ,li)F
k(nili ,ni li), (B8)

where the numerical coefficients fk(li ,li) are obtained from those in Eqs. (B5) and (B7), and the prefactor wi (wi−1)
2 is the number

of different electron pairs in orbital i.
For the case in which the electrons in the pair are in different orbitals, the sum of Eqs. (B5) and (B7) gives

〈(ij |ij ) − (ij |ji)〉 = wiwj

(
F 0(nili ,nj lj ) +

∑
k

gk(li ,lj )Gk(nili ,nj lj )

)
, (B9)

where the coefficients gk(li ,lj ) are given by Eq. (B7). Collecting the terms in Eqs. (B8) and (B9) with the single-particle energies
results in the expression for the average total energy Eq. (9).
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APPENDIX C: DERIVATION OF SELF-CONSISTENT HARTREE-FOCK EQUATIONS

If the orbitals are not necessarily normalized, the average energy (as defined in Sec. II B) derived in Appendix B may be
written in the form

EHF
av =

∑
i

wiI (nili ,ni li)

〈nili |nili〉 +
∑
i;k

aiikF
k(nili ,ni li)

〈nili |nili〉〈nili |nili〉 +
∑
i>j ;k

aijkF
k(nili ,nj lj )

〈nili |nili〉〈nj lj |nj lj 〉 +
∑
i>j ;k

bijkG
k(nili ,nj lj )

〈nili |nili〉〈nj lj |nj lj 〉 . (C1)

We wish to find wave functions that minimize EHF
av under the constraint of wave-function orthogonality. In other words, a pair

of radial functions from orbitals with the same angular momentum, (ni,li) and (nj ,lj ) with li = lj , must be orthogonal. Using
the Lagrange multipliers λij , we therefore search for the stationary solutions of the functional

K = EHF
av +

∑
i>j

δli lj λij

〈nili |nj lj 〉
〈nili |nili〉1/2〈nili |nili〉1/2

. (C2)

We now proceed to take functional derivatives of Eqs. (C1) and (C2) with respect to variations in a radial function φnl(r). We
note that only a subset of terms in Eq. (C1) involves nl, and those that do all contain a factor of 〈nili |nili〉−1. We can therefore
write those terms in the form Ẽ(nl) = 〈nili |nili〉−1F̃ (nl) with the variation

δẼ(nl) = 〈nili |nili〉−1δF̃ (nl) + δ[〈nili |nili〉−1]F̃ (nl) (C3)

and

δF̃ (nl) = wnlδI (nl) +
∑

k

anl,nl,kF
k(nl,nl)δ[〈nl|nl〉−1] +

∑
k

anl,nl,kδF
k(nl,nl)

〈nl|nl〉 +
∑

n′l′ 
=nl;k

anl,n′l′,kδF
k(nl,n′l′)

〈n′l′|n′l′〉

+
∑

n′l′ 
=nl;k

bnl,n′l′,kδG
k(nl,n′l′)

〈n′l′|n′l′〉 . (C4)

Furthermore, we have

δ[〈nili |nili〉−1] = −2
∫

dr
φnl(r)δφnl(r)

〈nl|nl〉2
(C5)

and

δF k(nl,n′l′) = 2(1 + δnl,n′l′)
∫

dr φnl(r) δφnl(r)
1

r
Y k(n′l′,nl,r), (C6)

δGk(nl,n′l′) = 2
∫

dr φn′l′(r) δφnl(r)
1

r
Y k(nl,n′l′,r), (C7)

where

Y k(nl,n′l′,r) =
∫ r

0
ds

sk

rk
φnl(s) φn′l′ (s) +

∫ ∞

r

ds
rk+1

sk+1
φnl(s) φn′l′ (s). (C8)

Finally, the variation of the terms involving the Lagrange multipliers in Eq. (C2) is

δ

[∑
n′

λnl,n′l′
〈nl|n′l〉

〈nl|nl〉1/2〈n′l|n′l〉1/2

]
=

∑
n′

λnl,n′l′

∫
dr φn′l(r) δφnl(r)

〈nl|nl〉1/2〈n′l|n′l〉1/2
. (C9)

The variational principle requires that the variation δK be stationary with respect to δφnl(r). Collecting Eqs. (C3)–(C9), we
obtain the Hartree-Fock equations [Eq. (13)] where

Yi(r) =
∑
j,k

(1 + δni li ,nj lj )ani li ,nj lj ,kY
k(nj lj ,nj lj ,r)

wi〈nj lj |nj lj 〉 , (C10)

Xi(r) =
∑
j 
=i,k

bni li ,nj lj ,kY
k(nili ,nj lj ,r)φnj lj (r)

wi〈nj lj |nj lj 〉 , (C11)

and

εii = 2

wi

[
Ẽ(nili) −

∑
k

ani li ,ni li ,kF
k(nili ,ni li)

〈nili |nili〉2

]
, (C12)

εij = λni li ,nj lj 〈nili |nili〉1/2

wi〈nj lj |nj lj 〉1/2
. (C13)
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