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Effective mass in bilayer graphene at low carrier densities: The role of potential disorder and
electron-electron interaction

J. Li,1 L. Z. Tan,2,3,* K. Zou,1,† A. A. Stabile,1 D. J. Seiwell,1 K. Watanabe,4 T. Taniguchi,4 Steven G. Louie,2,3,‡ and J. Zhu1,5,§

1Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
2Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA

3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan

5Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
(Received 6 July 2016; revised manuscript received 2 September 2016; published 25 October 2016)

In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier
densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine
experiment and theory to study the effective masses of electrons and holes m∗

e and m∗
h in bilayer graphene in the

low carrier density regime on the order of 1 × 1011 cm−2. Measurements use temperature-dependent low-field
Shubnikov–de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find
that while m∗

e follows a tight-binding description in the whole density range, m∗
h starts to drop rapidly below the

tight-binding description at a carrier density of n = 6 × 1011 cm−2 and exhibits a strong suppression of 30% when
n reaches 2 × 1011 cm−2. Contributions from the electron-electron interaction alone, evaluated using several
different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and
the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction
and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication
reveals an unusual disorder effect unique to two-dimensional semimetallic systems.

DOI: 10.1103/PhysRevB.94.161406

Bilayer graphene is a unique two-dimensional electron gas
(2DEG) system with unusual electronic properties [1]. At high
carrier densities, its hyperbolic bands are well described by a
four-band Hamiltonian [2,3] given by the tight-binding (TB)
description [4] where the hopping parameters are determined
by experiments or first-principles calculations [5–10]. Close
to the charge neutrality point (CNP), bilayer graphene exhibits
fascinating electron-electron (e−e) interaction-driven ground
states [11–15]. A natural question arises: How does the density
of states of bilayer graphene at the Fermi energy evolve as
carrier density n decreases continuously? The study of the
effective carrier mass m∗ is a powerful tool to probe this
evolution. Indeed, in conventional 2DEGs, increasing e−e

interaction leads to a substantial increase in m∗ at low carrier
densities, long before predicated many-body instabilities
[16–21]. Such studies provide valuable input to advance many-
body calculations [22]. In monolayer and bilayer graphene, the
close proximity of the conduction and valence bands and their
pseudospin characters play a significant role in the screening
of the Coulomb interaction. This has consequences for the
dispersions of the elementary excitations and the transport
properties of these systems [23–26]. In monolayer graphene,
both calculations [27] and measurements of m∗ [28,29] report
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strong enhancement of the Fermi velocity vF at low carrier
densities. The situation in bilayer graphene is much less clear.
Existing theoretical predictions vary greatly on the sign and
magnitude of the interaction correction to m∗ [30–35] whereas
measurements have been lacking.

In our earlier work [10], we reported on the measurements
of m∗ in bilayer graphene in the density regime on the
order of 1 × 1012 cm−2. A TB description was found to
work well, the hopping parameters of which were accurately
extracted from data. As the previous samples rested on oxides,
Coulomb potential disorder (field effect mobility μFE ∼ a few
thousand cm2 V−1 s−1, and disorder energy δE of a few tens of
meV [36,37]) prevented measurements at lower densities. In
our current hexagonal boron nitride (h-BN) supported samples,
μFE reaches 30 000 cm2 V−1 s−1, which allows for the precise
determination of m∗ down to n = 2 × 1011 cm−2 for both
electrons and holes. Following the conventional definition of
the interaction parameter rs = U/EF, where U is the Coulomb
interaction energy e2√nπ/(4πε0ε) and EF is the Fermi
energy, we estimate rs to be 7.5/

√
n(in units of 1011 cm−2)

using m∗ = 0.033 me, which is the average value of the
measured electron and hole masses near 1 × 1012 cm−2 in
Ref. [10]. In our presently studied carrier density regime
(2−12 × 1011 cm−2),rs ranges from 2.2 to 5.3, which is
comparable to the range studied in GaAs electron 2DEG,
where the renormalizedm∗ exceeds the band mass by 40%
at rs ∼ 5 due to e−e interaction [18]. Here, we find that
m∗

e and m∗
h behave very differently as n decreases. While

m∗
e continues to follow the high-density TB extrapolation, m∗

h

sharply dives in value below n = 6 × 1011 cm−2, reaching
about 70% of the TB band mass at n = 2 × 1011 cm−2.
A thorough theoretical investigation evaluating the effect of
e−e interaction in different approximations, together with
the effect of Coulomb potential disorder, identifies density
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FIG. 1. Sheet resistance vs carrier density Rsheet(n) for samples A
(solid red), B (solid blue), and C (dashed blue). Samples A and B are
supported on h-BN; sample C is supported on SiO2. The field effect
mobility μFE is 30 000, 20 000, and 4000 cm2 V−1 s−1, respectively,
for samples A–C. T = 1.6 K. The large resistance sample A exhibits
at the CNP results from a finite band gap caused by unintentional
doping. We discuss the effect of a band gap on the band mass in
Fig. S4 of the Supplemental Material [39]. The inset: An optical
micrograph for sample A.

inhomogeneity to be a key factor in explaining the experimen-
tal observations. This unusual effect of disorder is unique to
2D semimetallic systems.

Bilayer multi-terminal devices are made by exfoliating,
transferring, stacking, and patterning of a multi-layer-graphene
bottom gate electrode, 15–30-nm-thick h-BN gate dielectric
(Sources are PolarTherm grade PT110 from Momentive and
The National Institute for Material Science of Japan) and
bilayer graphene sheet (Kish Graphite) using a polymethyl-
methacrylate-/poly(vinylalcohol-) based transfer method [38]
and standard e-beam lithography. Transport experiments are
carried out in a variable-temperature pumped He4 cryostat
with a 9-T magnet using a standard low-frequency lock-in
technique (47 Hz) with a current excitation of 50 nA. Figure 1
plots the sheet resistance vs carrier density Rsheet(n) of
samples A and B, together with sample C reported in Zou
et al. [10] for comparison. The field effect mobility μFE is
30 000 cm2 V−1 s−1 and 22 000 cm2 V−1 s−1, respectively, in
samples A and B, in comparison to μFE = 4000 cm2 V−1 s−1

in sample C, which is supported on a SiO2 substrate. The
unintentional doping for both devices are moderate, and the
effect of the displacement (D) field on the bare band mass
is modeled in Sec. S4 of the Supplemental Material for both
devices [39]. We find that the presence of a small D field does
not change the conclusions of the paper.

The effective mass m∗ as measured in quantum oscillations
is given by

m∗ = �
2

2π

dA(E)

dE

∣∣∣∣
E=EF

, (1)

where A(E) is the k−space area enclosed by the contour
of constant energy E in the quasiparticle band structure.

FIG. 2. (a) T -dependent magnetoresistance Rxx(B) for nh =
4.7 × 1011 cm−2 at selected temperatures as indicated in the plot.
(b) Oscillation amplitude δRxx(B) of the data in (a) after background
subtraction. The solid red curve plots Eq. (2) with fitting parameters
m∗

h = 0.0347 me and τq = 140 fs. T = 2.3 K. δRxx(B) starts devi-
ating from the fit above B = 3 T. The conventional method used to
extract δRxx is illustrated by the blue dashed lines and produces m∗ =
0.0311(2)me. This is 10% smaller than m∗

h = 0.0347 me obtained
from the global fitting. (c) δRxx(B) for nh = 3.0 × 1011 cm−2 at
T = 2.3 and T = 15 K. The dashed curves are fits to Eq. (2) with
m∗

h = 0.0285 me and τq = 107 fs. Data in (a)–(c) are from sample
B. (d) The quantum scattering time τq as a function of carrier density
in sample A (red symbols) and sample B (blue symbols). Electrons
are shown by the filled symbols, and holes are shown by the open
symbols. τq is about 40 fs (dashed gray line) in sample C (Ref. [10]).

To accurately determine m∗, we measure the temperature-
dependent magnetoresistance Rxx(B) at a fixed carrier density
[Fig. 2(a)], extract the low-field Shubnikov–de Haas (SdH)
oscillation amplitude δRxx(T ,B) and perform simultaneous
fitting of the temperature and magnetic-field dependence to
the Lifshitz-Kosevich formula [40],

δRxx

R0
= 4γthexp

( −π

ωcτq

)
, γth=

2π2kBT
/
�ωc

sinh(2π2kBT
/
�ωc)

,

(2)

where ωc = eB
m∗ is the cyclotron frequency. The effective mass

m∗ and the quantum scattering time τq are the two fitting
parameters.

This global fitting procedure is illustrated in Figs. 2(b)
and 2(c) for two carrier densities nh = 4.7 and 3.0 ×
1011 cm−2 as examples (see Secs. S1 and S2 of the Sup-
plemental Material [39]). Compared to the common practice
of approximating δRxx at a particular B field by linearly
interpolating adjacent peak heights and analyzing its T

dependence to obtain m∗, fits to Eq. (2) better represent the
oscillation amplitude δRxx , especially at low carrier densities
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FIG. 3. The effective carrier masses m∗
h and m∗

e as a function
of the carrier density (red for electrons, blue for holes) in samples
A (squares), B (stars), and C (triangles). The data on sample C are
from Ref. [10]. Together, the measurement covers the density range
of approximately 1.4-4.1 × 1011 cm−2. The dashed curves plot m∗

calculated using a 4 × 4 tight-binding Hamiltonian with hopping
parameters γ0 = 3.43 eV,γ1 = 0.40 eV,γ3 = 0, and v4 = 0.063.
These values are obtained in Ref. [10] by fitting the data in sample C
at high densities.

when only a few oscillations are available [see Fig. 2(c), for
example]. It also enables us to discern and avoid using the
T -dependent oscillations of nascent quantum Hall states, the
analysis of which can lead to errors in m∗ [see the caption in
Fig. 2(b)]. The effective mass m∗ obtained using the global
fitting procedure is independent of the B field by virtue of
the method and best extrapolates to the density-of-states mass
of the bilayer graphene at B = 0, which is expected to be
modified by e−e interactions [30–35].

The above analysis enables us to accurately determine both
the electron and the hole effective mass m∗

h and m∗
e for the

approximate carrier density range of 1–10 × 1011 cm−2. The
uncertainty of m∗ varies from ± 0.0002 to ± 0.004 me from
high to low densities. The high accuracy of the measurements
facilitates comparison to theory as interaction corrections
to m∗ are expected to be typically in the few to tens of
percent range [16,18]. Also plotted in Fig. 2(d) is the quantum
scattering time τq in both samples. τq is between 100 and 140
fs for both electrons and holes. Compared to ∼40 fs in sample
C [10], the high values of τq in samples A and B attest to the
improvement of sample quality. Below n = 1 × 1011 cm−2,
the SdH oscillations become increasingly more nonsinusoidal
due to density inhomogeneity and global fits cannot be
obtained reliably.

Figure 3 plots m∗
h and m∗

e obtained in samples A and
B, together with data from sample C in Ref. [10]. In the
overlapping density regime, current and previous results agree
very well and are well described by the TB model with hop-
ping parameters γ0 = 3.43 eV, γ1 = 0.40 eV,γ3 = 0,v4 =
γ4/γ0 = 0.063, and � = 0.018 eV, which are determined in
Ref. [10]. The calculated m∗’s are plotted as dashed lines
in Fig. 3. The electron and hole branches use the same set
of parameters with their mass differences captured by v4. In
current samples, the TB parameters continue to describe all

the m∗
e data very well down to the lowest density measured.

On the hole side, however, m∗
h exhibits a sharp drop from

the TB model as nh is decreased to less than 5 × 1011 cm−2,
reaching a large suppression of 30% at nh = 2 × 1011 cm−2.
These densities are still sufficiently high that the effect of
trigonal warping [1] can be safely neglected. (See Fig. S6 of
the Supplemental Material [39].)

In existing theoretical studies of bilayer electronic disper-
sions, the effect of e−e interaction manifests in two ways,
i.e., by renormalizing the hopping parameters within the TB
model at high carrier densities [33] and by causing deviations
of m∗ from the TB description at low carrier densities. There
different trends of m∗ are predicted [30–32,34,35].

We begin our calculations with a four-band TB Hamiltonian
with noninteracting hopping parameters and explicitly include
the e−e interaction with the random-phase approximation
(RPA) of the screened exchange self-energy,

	(k) = −
∑

q

V 2D(q)

ε(q)
F ss ′

(k,k + q), (3)

using a dielectric function ε(q) = εBN − V 2D(q)χ (q), that
includes contributions from both the bilayer graphene and the
h-BN substrate and overlayer. Here εBN = 3.0 is determined
from the gating efficiency of the backgate, and F ss ′

is the
pseudospin overlap factor [30,31]. Equation (3) provides the
RPA correction to the bare energy bands E0(k) obtained
from TB calculation to yield the quasiparticle band-structure
E(k) = E0(k) + 	(k). The effective mass is then computed
using Eq. (1).

The calculated m∗
e and m∗

h are plotted in Fig. 4 in olive
dotted lines. Interaction leads to a slightly faster decrease in
m∗

e and m∗
h at low carrier densities, in contrast to the sudden

drop observed in the measured m∗
h for nh < 5 × 1011 cm−2.

Examining the problem from a different angle, we note that
in the RPA model, the dielectric function is well described
by the Thomas-Fermi (TF) screening ε(q) = εBN + qT F

q
in

the small q limit [34]. Fitting the TF description to our data
yields a tenfold reduction of the TF screening wave-vector
qT F from its expected value of qT F = m∗e2/�

2. This would
imply extremely weak screening of the e−e interaction in
our devices, which cannot be justified. (See Fig. S7 of the
Supplemental Material [39].) Thus, the e−e interaction effect,
at least at the RPA level, appears to be too weak to account for
the experimental observations. In comparison, in monolayer
graphene, a large suppression of m∗ is also observed at low
carrier densities and well described by RPA calculations [28].

Can Coulomb potential fluctuation and the resulting density
inhomogeneity [36,37,41] play a role? The answer is not so
intuitive at the first glance. In a conventional semiconducting
2DEG, density inhomogeneity results in the smearing of
m∗(n). This effect does not alter the trend of m∗(n) and
is typically nonconsequential in the carrier density regime
where the SdH oscillations are well behaved. In Fig. 2(c),
the SdH oscillations at nh = 3 × 1011 cm−2 appear to be
well behaved, yet the measured m∗

h is already 14% below
the TB band mass. Here, the gapless nature of the bilayer
bands makes a crucial difference between a bilayer graphene
and a conventional 2DEG. As the inset of Fig. 4 illustrates, as
the Fermi energy EF approaches the disorder energy scale δE,
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FIG. 4. Comparison of calculations and experiment at low carrier
density (0.2–1.3 × 1012 cm−2). Experimental data follow the sym-
bols used in Fig. 3. The olive dashed lines plot the calculated m∗

including the e−e interaction in a random-phase approximation. The
black and gray lines are calculations that further include the effect
of potential disorder using δE = 5.4 meV obtained from τq and the
temperature dependence of the conductance. In both calculations,
γ0 = 3.08 eV and γ1 = 0.36 eV are chosen to fit the experimental
data in the high-density regime. Their values differ from those
obtained in Ref. [10] since the e−e interaction is explicitly calculated
here whereas in Ref. [10] its effect is represented by renormalizing the
hopping parameters. γ3 = 0 and v4 = 0.063 are taken from Ref. [10].
The inset: a schematic of the electron-hole coexistence at low carrier
densities due to disorder and its effect on the cyclotron motion.

instead of depletion, carriers of the opposite sign start to appear
in parts of the sample. The SdH oscillations of a minority
carrier type have the opposite sign in dA/dE; their presence
in some regions of the sample thus contribute negatively to the
average of m∗, resulting in a decrease in its value. Such a can-
cellation effect does not occur in a conventional semiconductor
2DEG.

This situation can be modeled by defining the overall carrier
density and effective mass as ensemble averages of their local
counterparts nloc and mloc, respectively,

n(E) = 〈nloc〉 =
∫

dμ f (μ) nloc(E + μ), (4)

m(E) = 〈mloc〉 =
∫

dμ f (μ) mloc(E + μ), (5)

Here, the fluctuation of energy is assumed to have a
Gaussian profile f (μ) with a standard deviation of δE.

Effective masses calculated using the RPA model and
including disorder characterized by a broadening energy of
δE = 5.4 meV are plotted as solid lines in Fig. 4. Evidently,
the combination of the e−e interaction and Coulomb potential
fluctuations can now quantitatively reproduce the observed
behavior of m∗

e and m∗
h over the entire range of measurement

and for both samples. Remarkably, the same value for δE

simultaneously captures the sharp decrease in m∗
h at nh < 5 ×

1011 cm−2 and the absence of such a decrease on the electron
side. Our calculations predict that m∗

e should also substantially

decrease from the TB values at yet lower carrier densities, just
below the range probed in our measurements. The difference
arises from a smaller electron-density inhomogeneity due to
a smaller m∗

e . The quantum scattering time τq ∼ 120 fs found
in both samples [Fig. 2(d)] yields δE ∼ �/2τq ∼ 2.7 meV,
in good agreement with the theoretical fit. In addition,
we can estimate the density fluctuation δn by locating the
onset density n∗ at which the conductance sharply increases
with density [11–15]. n∗ is approximately 2 × 1010 cm−2 in
sample A and 4 × 1010 cm−2 in sample B (see Fig. S4 in the
Supplemental Material [39]). These values are also consistent
with estimates obtained by locating the crossover density
n(h/e)c ∼ 5 × 1010 cm−2 where the temperature dependence
of R(n) changes from that of a metal, i.e., dR/dT > 0
to that of an insulator, i.e., dR/dT < 0 [42] in a bilayer
sample of similar quality. A δn of 5 × 1010 cm−2 corresponds
to δE = 2 meV using m∗ = 0.03 me. These consistent
estimates of disorder energy scales support the fitting value
of δE used for both samples. Furthermore, our calculations
also show that interaction renormalizes the interband transition
energy γ1 from the bare value of 0.36 eV (Fig. 4) to 0.38 eV,
in excellent agreement with infrared absorption measurements
[6,7,9].

In Ref. [10], we have shown that a set of renormalized TB
hopping parameters can capture m∗ in the high-density regime
very well without explicitly including e − e interactions (see
the dashed lines in Fig. 3). In Fig. S8 of the Supplemental
Material [39], we show that adding disorder broadening δE to
this set of parameters can also capture the main trend of the
data, with the diving of m∗

h at low densities slightly too abrupt
compared to experiment.

The above studies highlight a few remarkable differences
between bilayer graphene, a gapless Dirac Fermi liquid,
and conventional semiconductor 2DEGs. First, both our
calculations and measurements suggest that the effect of the
e−e interaction on m∗ in bilayer graphene remains weak
down to n∼ 2 × 1011 cm−2(rs = 5.3) whereas past studies
on GaAs electrons showed an enhancement of more than
40% at this interaction parameter [18]. Second, the effect
of disorder appears quite differently in these two systems.
In conventional semiconducting 2DEGs, disorder leads to
localization and therefore the increase rather than the decrease
in m∗ at low carrier densities [18]. Here in gapless bilayer
graphene, disorder leads to coexisting electrons and holes
and consequently a partial cancellation effect on m∗. In
comparison to the well-recognized Klein tunneling effect in
p−n junctions [43,44], this study exposed a more elusive effect
of electron-hole puddles. Studies of low carrier density regimes
in Dirac materials thus require a great deal of caution. For now,
samples of yet higher qualities are necessary to elucidate the
intrinsic behavior of m∗ near the charge neutral point of bilayer
graphene.

In conclusion, we have performed careful measurements of
the effective mass m∗ in high-quality h-BN-supported bilayer
graphene samples down to the carrier density regime of 1 ×
1011 cm−2 and observed a sharp decrease in the hole mass
at low carrier densities. Our calculations show that, although
the inclusion of electron-electron interaction is necessary to
reach excellent quantitative agreement with the data at all
carrier densities, Coulomb potential fluctuations, which result
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in the coexistence of electron and hole regions and a partial
cancellation of m∗, is chiefly responsible for the observed sharp
drop in m∗

h at low densities. This mechanism, which is absent in
finite-gap semiconductor two-dimensional systems, is another
manifestation of the unusual consequences of gapless Dirac
bands.
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